Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа №103»

Основная образовательная программа среднего общего образования

РАССМОТРЕНО: СОГЛАСОВАНО: УТВЕРЖДЕНО

приказом директора

На педагогическом совете Заместителем директора по УВР Протокол № 12 от

от 24.08.2022 № 01-06/155-осн

24.08.2022

РАБОЧАЯ ПРОГРАММА курса внеурочной деятельности

«Решение задач повышенной сложности»

10 – 11 классы

Срок освоения 2 года

Решение задач занимает в химическом образовании важное место, так как это один из приемов обучения, посредством которого обеспечивается более глубокое и полное усвоение учебного материала по химии. Чтобы научиться химии, изучение теоретического материала должно сочетаться с систематическим использованием решения различных задач. В школьной программе существует эпизодическое включение расчетных задач в структуру урока, что снижает дидактическую роль количественных закономерностей, и может привести к поверхностным представлениям у учащихся о химизме процессов в природе, технике. Сознательное изучение основ химии немыслимо без понимания количественной стороны химических процессов.

Решение задач содействует конкретизации и упрочению знаний, развивает навыки самостоятельной работы, служит закреплению в памяти учащихся химических законов, теорий и важнейших понятий. Выполнение задач расширяет кругозор учащихся, позволяет устанавливать связи между явлениями, между причиной и следствием, развивает умение мыслить логически, воспитывает волю к преодолению трудностей. Умение решать задачи является одним из показателей уровня развития химического мышления учащихся, глубины усвоения ими учебного материала.

Данный курс предназначен для обучающихся 10–11-х классов и рассчитан на 68 часов (34 часа в 10 классе, 34 часа в 11 классе).

Цель курса: закрепление, систематизация и углубление знаний учащихся по химии путем решения разнообразных задач повышенного уровня сложности, соответствующие требованиям письменных вступительных экзаменов по химии.

Основным требованием к составлению или отбору задач является их химическое содержание, чёткость формулировки и доступность условия задачи, использование в условии задачи сведений практического характера.

Программа курса рассчитана на два года обучения:

1-й год (10-й класс) — этап решения задач по курсу органической химии. Особое внимание уделяется изучению алгоритмов решения задач на параллельные и последовательные превращения, использование газовых законов, нахождение молекулярных формул органических веществ различных гомологических рядов, использование знаний об окислительно-восстановительных процессах с участием органических веществ, и, кроме того, решению качественных задач и задач комбинированного характера.

2-й год (11-й класс) — **заключительный этап.** Решение наиболее сложных задач, преимущественно комбинированного характера, кроме того, предусматривается знакомство учащихся с тестовыми заданиями, используемыми при проведении Единого Государственного экзамена.

1. Планируемые результаты освоения курса внеурочной деятельности «Решение задач повышенной сложности»

Предметные результаты изучения курса:

Выпускник научится:

Рассчитывать количество вещества и объема газообразного вещества; рассчитывать массовую долю элемента в сложном веществе; рассчитывать количество вещества и массы для одного из реагентов или продуктов; рассчитывать объем газообразного

реагента или продукта; рассчитывать с использованием понятий об избытке и недостатке реагента и о практическом выходе продукта; решать задач на примеси; решению задач различными способами.

Выпускник получит возможность научиться: выписывать из условия задачи все числовые данные, учитывая общепринятые обозначения и размерности; формулировать вопрос задачи; составлять схемы и уравнения реакций; дополнять условия задачи справочными данными(молярный объем, молярные массы, число Авогадро и т.д.); выбирать необходимые для расчета формулы; в результате математических преобразований получать окончательную формулу для расчета искомой величины; делать проверку полученной формулы; делать расчет и получать численный ответ; решать задачи, используя методы решения логических пропорций, а также табличный и алгебраический методы; научиться пользоваться дополнительной литературой; решать задачи различного уровня сложности.

Личностные результаты изучения курса:

В рамках ценностного и эмоционального компонентов будут сформированы: гражданский патриотизм, любовь к Родине, чувство гордости за свою страну; уважение к истории, культурным и историческим памятникам; эмоционально положительное принятие своей этнической идентичности; уважение к другим народам России и мира и принятие их, межэтническая толерантность, готовность к равноправному сотрудничеству; уважение к личности и её достоинству, доброжелательное отношение к окружающим, нетерпимость к любым видам насилия и готовность противостоять им; уважение к ценностям семьи, любовь к природе, признание ценности здоровья, своего и других людей, оптимизм в восприятии мира; потребность в самовыражении и самореализации, социальном признании; позитивная моральная самооценка и моральные чувства — чувство гордости при следовании моральным нормам, переживание стыда и вины при их нарушении.

курса Метапредметными результатами изучения является формирование универсальных учебных действий (УУД). Регулятивные универсальные учебные действия Выпускник научится: целеполаганию, включая постановку новых целей, преобразование практической задачи в познавательную; самостоятельно анализировать условия достижения цели на основе учёта выделенных учителем ориентиров действия в новом учебном материале; планировать пути достижения целей; устанавливать целевые приоритеты; уметь самостоятельно контролировать своё время и управлять им; принимать решения в проблемной ситуации на основе переговоров; осуществлять констатирующий и предвосхищающий контроль по результату и по способу действия; актуальный контроль на уровне произвольного внимания; адекватно самостоятельно оценивать правильность выполнения действия и вносить необходимые коррективы в исполнение как в конце действия, так и по ходу его реализации; основам прогнозирования как предвидения будущих событий и развития процесса.

Выпускник получит возможность научиться: самостоятельно ставить новые учебные цели и задачи; построению жизненных планов во временной перспективе; при планировании достижения целей самостоятельно, полно и адекватно учитывать условия и средства их достижения; выделять альтернативные способы достижения цели и выбирать наиболее эффективный способ; основам саморегуляции в учебной и познавательной деятельности в форме осознанного управления своим поведением и деятельностью, направленной на достижение поставленных целей; осуществлять познавательную рефлексию в отношении действий по решению учебных и познавательных задач; адекватно оценивать объективную трудность как меру фактического или предполагаемого расхода ресурсов на решение задачи окислительно-восстановительных реакций.

Тем а 1. Структура химической задачи (5 часов)

Две стороны химической задачи. Анализ задачи, выделение химической и математической частей, способы задания условий: неполные, лишние и неопределенные математические данные задачи.

Понятие о взаимно обратных задачах. Обратная задача и ее составление. Составление простых и сложных задач по химическим формулам веществ.

Структура задач по уравнениям химических реакций. Их составление. Сложные задачи, использование комбинированных знаний из разных разделов химии и других предметов. Оригинальность вопроса нестандартных задач, наличие неопределенности, исторических сведений, включение разнообразных названий веществ. Занимательные задачи. Тривиальная и современная номенклатура химических соединений.

Тема 2. Вычисления по химическим формулам (14 часов)

Расчёты с использованием газовых законов, относительной плотности смеси газов, объёмной и мольной доли веществ в смеси.

Вычисления средней молярной массы смеси. Нахождение массовой доли элемента в веществе, массы химического элемента в образце вещества, определение химического элемента на основании его массовой доли и степени окисления в бинарных соединениях.

Нахождение молекулярной формулы вещества по его абсолютной и относительной плотности паров и массовой доле элементов.

Нахождение молекулярной формулы органического соединения по массе (объему) продуктов сгорания.

Нахождение массы элемента, если известна масса вещества; и массы вещества, если известна масса элемента.

Решение задач на смеси алгебраическим способом.

Тема 3. Задачи на растворы (13 часов)

Различные способы решения задач на растворимость. Растворимость кристаллогидратов и их осаждение из насыщенных растворов. Задачи с использованием сведений о растворимости кристаллогидратов или связанные с их получением. Задачи на вычисление массовой доли растворенного вещества при растворении кристаллогидратов и обратные задачи. Сравнение понятий «растворимость» и «массовая доля растворенного вещества в растворе». Правило смешения и алгебраический способ решения задач на смешивание растворов.

Понятие концентрации раствора. Молярная концентрация. Решение олимпиадных задач с применением разнообразных способов выражения содержания растворенного вещества в растворах. Переход от одной концентрации к другой.

Тема 4. Вычисления по уравнениям реакций (14 часов)

Расчёт количества вещества, массы продукта реакции, если исходное вещество дано с примесями, расчёт массы исходного вещества, соединяющего примеси, по продуктам реакции

Задачи на избыток-недостаток

Расчёт продукта реакции, веществ, содержащихся в растворах после реакции, если одно из реагирующих веществ дано в избытке

Расчёты массовой доли выхода продукта реакции

Тема 5. Вычисления по термохимическим уравнениям реакций (4 часа)

Термохимические уравнения реакций. Расчёты по термохимическим уравнениям. Тепловой эффект реакции. Энтальпия.

Тема 6. Окислительно-восстановительные реакции (4 часа)

Окислитель, восстановитель, процессы окисления и восстановления. Составление уравнений окислительно-восстановительных реакций. Расчёты по уравнениям окислительно-восстановительных реакций.

3. Тематическое планирование курса внеурочной деятельности «Решение задач повышенной сложности»

$N_{\underline{0}}$	Тема занятия	Количество
п/п		часов
	10 класс (34 часа)	
	Структура химической задачи (5 часа).	
1	Две стороны химической задачи.	1
2	Понятие о взаимно обратных задачах. Обратная задача и ее	1
	составление.	
3	Структура задач по уравнениям химических реакций. Их	1
	составление.	
4 - 5	Тривиальная и современная номенклатура химических соединений.	2
	Вычисления по химическим формулам (14 часов)	
6 - 7	Расчёты с использованием газовых законов, относительной	2
	плотности смеси газов, объёмной и мольной доли веществ в смеси.	
8	Вычисления средней молярной массы смеси.	1
9 –	Нахождение массовой доли элемента в веществе, массы	2
10	химического элемента в образце вещества.	
11 –	Определение химического элемента на основании его массовой	2
12	доли и степени окисления в бинарных соединениях.	
13 –	Нахождение молекулярной формулы вещества по его абсолютной и	2
14	относительной плотности паров и массовой доле элементов.	
15 –	Нахождение молекулярной формулы органического соединения по	2
16	массе (объему) продуктов сгорания.	
17	Нахождение массы элемента, если известна масса вещества; и	1
	массы вещества, если известна масса элемента.	
18 –	Решение задач на смеси алгебраическим способом.	2
19		
	Задачи на растворы (12 часов).	
20 –	Различные способы решения задач на растворимость.	2
21	Растворимость кристаллогидратов и их осаждение из насыщенных	
	растворов.	
22 –	Задачи с использованием сведений о растворимости	2
23	кристаллогидратов или связанные с их получением.	
24 –	Задачи на вычисление массовой доли растворенного вещества при	2
25	растворении кристаллогидратов и обратные задачи.	
26 –	Сравнение понятий «растворимость» и «массовая доля раство-	2
27	ренного вещества в растворе».	
28 –	Правило смешения и алгебраический способ решения задач на	2
29	смешивание растворов.	
30 –	Решение задач ЕГЭ типа В10	3
32		
33 –	Зачетное занятие. Контрольная работа по решению задач	2
34	изученных типов.	

11 класс (34 часа) Вычисления по уравнениям реакций (10 часов)		
исходное вещество дано с примесями, расчёт массы исходного		
вещества, соединяющего примеси, по продуктам реакции		
Задачи на избыток-недостаток	3	
Расчёт продукта реакции, веществ, содержащихся в растворах	2	
после реакции, если одно из реагирующих веществ дано в избытке		
Расчёты массовой доли выхода продукта реакции	2	
Вычисления по термохимическим уравнениям реакций (4 часа)		
Термохимические уравнения реакций. Расчёты по термохи-	2	
мическим уравнениям.		
Тепловой эффект реакции. Энтальпия. Расчеты с использованием	2	
закона Гесса.		
Окислительно-восстановительные реакции (4часа)		
Окислитель, восстановитель, процессы окисления и восста-	3	
новления. Составление уравнений окислительно-восстанови-		
тельных реакций.		
Расчёты по уравнениям окислительно-восстановительных реакций.	1	
Решение задач		
Нахождение молекулярной формулы органического вещества по	2	
его плотности и		
массовым долям элементов, входящих в его		
состав, или по продуктам сгорания		
Расчёты массы (объёма, количества вещества) продукта реакции,	2	
если одно из веществ дано в виде раствора с определённой		
массовой долей растворённого вещества		
Объяснять общие способы и принципы получения наиболее	2	
важных веществ		
Характеристика переходных элементов (меди, цинка, хрома,	2	
железа) по их положению в Периодической системе химических		
элементов Д.И. Менделеева и особенностям строения их атомов		
Решение задач из ЕГЭ	8	

Литература

Пузаков С. А. Пособие по химии для поступающих в вузы. Вопросы, упражнения, задачи. Образцы экзаменационных билетов: Учебное пособие. — М.: Высшая школа, 2004.

Свитанько И. В. Нестандартные задачи по химии. - М.: Вентана-Граф, 1994.

Хомченко Г. П., Хомченко И. Г. Задачи по химии (для поступающих в вузы). — М.: Высшая школа, 1994.

 $Aдамович\ T.\ \Pi.$ Сборник упражнений и усложненных задач с решениями по химии. - Минею Вышэйшая шк., 1973.

 Γ линка Н. Л. Задачи и упражнения по общей химии: Учеб. пособие для вузов. - Л.: Химия, 1985.

Глинка Н. Л. Общая химия: Учеб. пособие для вузов. - Л.: Химия, 1985.

Кузъменко Н. Е., Еремин В. В., Попков В. А. Химия: для школьников старших классов и поступающих в вузы: Учеб. пособие. - М.: Дрофа, 1995.

Сорокин В. В., Загорский В. В., Свитанъко И. В. Задачи химических олимпиад. — М.: Изд-во МГУ, 1989.